A Practical, Science-Based Model for Managing Risks at Camps and Outdoor Adventure Programs
The summer camp session had been going smoothly, until the camper wandered into a wooded area at the edge of the camp, found some poison hemlock growing at the edge of a stream, picked a handful, and ate it.
The camp had been operating for many years, but had just moved to a new, rented facility. The camp counselors were teenagers, mostly 16 years old—some were familiar with the story of Socrates killing himself by consuming hemlock, but none could identify the plant. And nobody knew this deadly poisonous vegetation was growing on the grounds of the camp.
Kids will experiment with eating random plants
It’s the kind of incident that camp directors everywhere think about: seeming random; certainly unexpected. Why was the presence of this extremely dangerous plant unknown? How was it that the camper was unsupervised, wandering through the forest at the camp’s edge? And what on earth compelled the camper to pick that plant, above all the others, and eat it?
We know that safety incidents will occur at camp, and at other outdoor, experiential, and trip-and-travel programs. What we can’t tell is what kind of incident will occur, or when, or where, or who will be involved.
It’s this unpredictability that poses a challenge to leaders of outdoor and experiential programs. How do we anticipate the unexpected? How do we guard against unforeseen breakdowns in our safety system—full of policies, procedures, and documentation designed to prevent mishaps from occurring?
Camps aren’t the only organizations to struggle with preventing safety incidents. Airlines strive to avoid plane crashes. Nuclear power plant operators work to prevent meltdowns. Hospitals seek to eliminate wrong-limb surgical amputations.
Aviation, power generation, healthcare and other large industries have invested heavily in researching why incidents occur—and by extension, how they can be prevented. They have funded research scientists to conduct investigations, develop theories of incident causation, and establish models that represent those incident causation theories. There are academic journals, conferences, and an ever-growing literature in the field of risk management.
Camps and other outdoor programs can learn from the work that springs from these investments in advancing safety science. Just as the highest-quality camps pay attention to the best thinking in human development, experiential learning, and environmental education pedagogy, camps can benefit greatly from keeping abreast of the best thinking in safety science across industries, and applying cutting-edge risk management theories and models to helping keep kids safe and having fun at camp.
Let’s take a look at safety thinking, and the risk management theories and models that have evolved over time. We’ll explore how safety science has advanced over the last 100 years. And we’ll examine how the most current thinking in risk management—revolving around the idea of complex sociotechnical systems—can be applied to improve safety outcomes at camp.
The field of risk management includes career specialists in safety science, a wide variety of theories and models, numerous academic journals, and PhD programs in risk management. From this, best practices have evolved that can be applied across industries—from aviation to outdoor education and recreation.
A variety of academic journals on safety and risk management exist.
The Evolution of Safety Thinking: Four Ages
Let’s begin by briefly considering the trajectory of safety science from the Industrial Revolution to the present day.
The evolution of safety thinking can be broken down into several eras, each representing a distinct approach to understanding why incidents occur, and how they might be prevented. The model below illustrates four separate eras of safety thinking:
The Age of Technology,
The Age of Human Factors,
The Age of Safety Management, and
The Age of Systems Thinking.
The Age of Technology
In this model, adapted from Waterson et al., we see the 1800’s version of safety thinking as a mechanistic model. The predominant understanding of incident causation was a linear one—the “domino model”—where incidents were seen as resulting from a chain of events.
This linear chain-of-causation thinking is exemplified in the following 13th century nursery rhyme:
For want of a nail the horseshoe was lost.
For want of a horseshoe the horse was lost.
For want of a horse the rider was lost.
For want of a rider the battle was lost.
For want of a battle the kingdom was lost.
Root Cause Analysis was a core element of safety thinking at this time: if one could only identify the originating cause of the problem (want of a nail, in the example above), then the incident (loss of a kingdom) could be prevented.
The Age of Human Factors
If we fast-forward to a time 50 years ago, we see that human behavior—and specifically, human error—is seen as a major cause of incidents. If we can control people’s actions, why, then we can prevent incidents from occurring!
This “Age of Human Factors” brings detailed policy registers, procedures handbooks, operating manuals, and rulebooks of every sort. Control human behavior—the most significant, yet most unpredictable, element of any safety system—and you control risk. This marks the advent of rules-based safety.
It’s important to note that each step in the history of safety thinking represents a cumulative advance of wisdom regarding how to prevent incidents. The older theories and models are not to be discarded; they are to be built upon. As safety thinking advanced from a mechanistic search for incident causes through Root Cause Analysis, it’s important to recall that Root Cause Analysis can still be useful—but, crucially, more sophisticated and effective tools have been added to the safety manager’s toolkit.
The Age of Safety Management
It didn’t take long, however, for management to recognize the fact that—surprise!—people don’t always follow the rules. And, rules cannot be invented to address every conceivable situation, every possible permutation of circumstances where risk factors appear.
We then see, in more or less the 1980’s, the evolution of a recognition that the use of procedures and inflexible rules has to be balanced with allowing people to use their good judgement, and to adapt dynamically to a constantly changing risk environment.
This is the birth of “Integrated Safety Culture”—combining rules-based safety, which provides useful guidance to support wise decision-making in times of stress—with the flexibility for individuals to make their own decisions, even if that means not following the documented procedures or the pre-existing plan.
The Age of Systems Thinking
Nuclear power plants are big, complicated things. They have lots of mechanical components, and are operated and maintained by large teams of personnel. Although much attention is put towards their safe operation, dangerous meltdowns continue to occur—the Three Mile Island reactor partial meltdown in 1979, the Chernobyl disaster in 1986, and the Fukushima Daiichi nuclear disaster in 2011.
Damage to No. 3 reactor building at Fukushima Daiichi nuclear power plant, March 2011
It became clear that despite detailed engineering systems, extensive personnel training and oversight, and many other safety measures, managers seemed simply unable to understand and control the enormous complexity of a nuclear generating station. The system was too complex. The safety models that were in place to prevent meltdowns simply weren’t 100 percent effective. A new, more sophisticated model of incident causation, that could account for the complex mix of people and technology, was needed.
This led to the development of complex sociotechnical systems theory.
Complex sociotechnical systems theory combines a recognition of the profound complexity of “systems”—whether they be a nuclear power plant or a summer camp. It attempts to understand how people and their behavior influence safety, and how technology—from pressure release valves in a reactor, to PFDs on a canoeing trip—influence safety outcomes. And it seeks to understand the interaction of people—the “socio-”—with the technologies and items they interact with—the “technical”—within a system that also has outside influences and is constantly in flux.
Systems thinking—the application of complex sociotechnical systems theory—represents the most current and most advanced approach to risk management. It is, however, more abstract and challenging to understand than simpler, albeit less effective models. It’s therefore important to invest in understanding what complex STS theory means, and how it can be applied to the camp setting.
One of the principal ideas of systems thinking is the recognition that we cannot have full awareness of, let alone control of, the complex system of an airplane, a hospital operating room, or a summer camp. We therefore need to build in extra safeguards and capacities so that when an inevitable breakdown in our safety system occurs, the system is resilient enough to withstand that breakdown without catastrophic failure.
This has been termed “resilience engineering,” and is a fundamental approach to applying systems thinking to the camp environment. We'll further examine the resilience engineering concept, as it applies to camp safety, shortly.
The Evolution of Safety Thinking: Incident Causation
Let’s continue exploring how ideas of risk management have evolved over the decades. But this time we'll look at how thinking around how incidents occur has become more sophisticated, and an increasingly accurate representation of the factors that lead towards a mishap's occurrence.
The Single-Cause Incident Concept: A Simple Linear Model
The idea of what causes an incident—at camp, or anywhere—was in the past considered to be due to a single causal element. The boots fit poorly, and thus caused the blister. The blister popped, which caused the infection. The infection got worse, so the camper ended up in the hospital. The root cause: ill-fitting boots. The sequence: a linear one, from root cause leading to an unanticipated mishap, leading to an injury or other loss.
In the image below, from the Safety Institute of Australia, building off the work of Hollnagel, we see this illustrated as the “single cause” principle of causation, which is part of a simple linear model of how incidents occur. The chain of causation is a simple linear sequence.
Adapted from: Safety Institute of Australia
This idea gained popularity in 1931, when Herbert Heinrich published the first edition of his influential book, Industrial Accident Prevention.
Heinrich used a sequence of falling dominos in his text to show how an accident came about:
Credit: Industrial Accident Prevention
Simply eliminate one step in the chain, and voila! No accident:
Credit: Industrial Accident Prevention
Another simplistic, linear-style model is the Fault Tree Analysis. The Fishbone Diagram is one example.
Here we see all the factors that came together to lead to a camper slipping and falling on a trail. The camp counselor was naïve and inattentive; the culture on the trip was "shut up and keep hiking;" the trail was slick and ill-maintained, and the camper's sneakers provided insufficient traction.
The Multiple-Causes Incident Concept: A Complex Linear Model
Later, it became increasingly clear that multiple factors were involved in causing an incident. An event occurred—a person went on a hike wearing too-small boots. But that doesn’t necessarily lead to an infected blister. Perhaps the trip leader asks hikers to check for hot spots. Or the program instructs campers to break in their boots before camp, during which time the poor fit could be discovered and rectified.
But if the trip leaders are not well-trained and proactive about safety, and if the camp does not provide a detailed gear list with instructions well in advance of the camp session, these “latent conditions” can combine with the event—the inadequate footwear—to cause an incident.
This is the “epidemiological” model. It features one or more events, plus one or more latent conditions. The “epidemiological” term references disease modeling, where, for example, a person hikes into the forest in search of wild game (the event), and encounters an animal such as a bat or civet cat that harbors a pathogen (the disease reservoir). The person then comes back into a populated area, leading to an outbreak or epidemic of disease.
This incident model is still a relatively simplistic, linear model, but it also was one of the first to represent incidents as happening within a system of elements.
The epidemiological model gained prominence in 1990, after James Reason published a paper on the topic in the Philosophical Transactions of the Royal Society.
Reason described risk management systems as a series of barriers and defenses. If a hazard were able to get past each of the barriers and defenses by finding a way through the holes in those obstacles, then an incident would occur. Only when all the conditions lined up right would the hazard successfully pass the obstacles and cause an incident.
Reason’s conception, with the easy-to-remember name “Swiss cheese model”
This model, while being superseded by complex systems models that more accurately represent incident causation, uses evocative symbolism and is still in the public consciousness, being cited in the New York Times in August 2021 on COVID-19 safety.
Incident Causation as Taking Place within a Complex System
Finally, risk management theoreticians arrived at what represents the current best thinking in incident causation: the complex systems model.
Here, a complex and ever-changing array of social and technological factors interact in impossible-to-predict ways, leading to an incident. This is the idea of complex sociotechnical systems, as applied to risk management.
Examples of complex systems include the global climate crisis; issues of diversity, equity, and inclusion; and the summer camp setting.
Examples of complex socio-technical systems
Complex systems are characterized by:
Difficulty in achieving widely shared recognition that a problem even exists, and agreeing on a shared definition of the problem
Difficulty identifying all the specific factors that influence the problem
Limited or no influence or control over some causal elements of the problem
Uncertainty about the impacts of specific interventions
Incomplete information about the causes of the problem and the effectiveness of potential solutions
A constantly shifting landscape where the nature of the problem itself and potential solutions are always changing
This model is the most accurate we have to date. However, it’s also the most difficult to conceptualize and work with.
A variety of terms have been used by safety specialists to describe complex STS theory applied to risk management: Safety Differently, Safety-II, Resilience Engineering, Guided Adaptability, and High Reliability Organizations, among others.
Books exploring risk management through complex STS theory
A panoply of terms has been employed in efforts to impose order and structure on the idea of complex systems:
Perhaps the best-known model, however, is the “AcciMap” approach, developed by the Danish professor Jens Rasmussen, whose pioneering work in nuclear safety has been adapted for the outdoor education/recreation and other contexts.
Rasmussen saw different levels at which safety could be influenced:
Government, which can pass and enforce safety laws;
Regulators and industry associations, such as the American Camp Association, which can establish detailed standards;
Organizations, like summer camp operators, which can establish sound operating policies to manage risk;
Managers, such as camp directors, who can develop work plans that incorporate good safety planning;
Line staff, for example camp counselors, who perform day-to-day activities with prudence and due care and
Work tasks, such as running a rock climbing site, which have been designed to have minimal inherent risks.
AcciMap adapted from: Risk Management In a Dynamic Society: A Modelling Problem. Jens Rasmussen, Safety Science 27/2-3 (1997)
Rasmussen gave the example of a motor vehicle accident in which a tanker truck rolled, spilling its contents and polluting a water supply. The analysis identified causal factors at all levels--government, regulators/associations, the transportation company, personnel, and work tasks--that contributed to the incident.
Rasmussen’s AcciMap of a motor vehicle accident leading to water pollution.
But AcciMap, and the AcciMap variants that have evolved over the years, are far from the only models which seek to represent complex sociotechnical systems theory applied to risk management.
For instance, the Functional Resonance Analysis Method models complex socio-technical systems in an intricate web of interconnecting influences. Primarily used in large industrial applications, it’s less likely to be useful for safety management in the camp context.
FRAM: Too abstruse for the camp context
The Risk Domains Model
A model exists, however, that adapts the complex sociotechnical systems elements of AcciMap and similar frameworks, and applies them to the contexts of summer camp and related outdoor, adventure, wilderness, travel, and experiential programs.
This is the Risk Domains model, pictured below.
Here we can see eight “direct risk domains:”
Safety culture
Activities & program areas
Staff
Equipment
Participants
Subcontractors (vendors/providers)
Transportation
Business administration
Each of these areas holds certain risks. For example, a waterfront program area may harbor risks of sunburn or drowning. The participant domain brings risks of campers, for instance, who are poorly trained, fail to follow safety directions, or who are medically unsuitable for the activity.
In addition, there are four “underlying risk domains:”
Government
Society
Outdoor Industry
Business
Here, we see that sound government regulation can support good safety outcomes; a society that values safety and human life encourages good safety practices; industry associations like the American Camp Association can provide powerful support for good risk management, and large corporations that feel a civic responsibility will not impede the government’s capacity to enforce sensible safety regulation.
Risk in any of these domains can combine to directly or indirectly lead to an incident, as we see illustrated in the web of interconnections between each risk domain and an ultimate incident.
Managing risks within the context of the Risk Domains model has two components.
First, in each risk domain, risks are identified that may apply to an organization.
For example, a camp may recognize that it must intentionally develop a positive safety culture each summer with its new crew of enthusiastic teenage camp counselors, lest pranks and risk-taking get out of hand.
And a camp office may need to invest in business administration-related protections to secure medical form confidentiality, protect against embezzlement or other theft, and guard against ransomware and other IT risks.
Policies, procedures, values and systems should be instituted to bring the risks that have been identified in each risk domain as potentially present, down to a socially acceptable level.
Policies might include, for example, a rule that safety briefings are held before each activity, or that incident reports are generated after all non-trivial incidents.
Procedures might include the appropriate way to send a camper down a zipline, or how to sanitize cookware in the camp kitchen.
Values might include, for instance, the value that safety is important, and should be taken seriously.
And systems might include medical screening, staff training, or equipment maintenance systems.
The idea is not to bring risks to zero—that would paralyze any camp operation—but to bring them to a level where, if an incident occurs, then stakeholders, such as parents, newsmedia, and regulators, understand that reasonable precautions were taken against reasonably foreseeable harms, even though an incident did occur, as is inevitably the case from time to time.
Risk Management Instruments
In addition to instituting specific policies, procedures, values and systems to maintain identified risks in all relevant risk domains at a socially acceptable level, there are broad-based tools, or instruments, that can be applied to manage risks across multiple or all risk domains at the same time.
These risk management instruments are:
Risk Transfer
Incident Management
Incident Reporting
Incident Reviews
Risk Management Committee
Medical Screening
Risk Management Reviews
Media Relations
Documentation
Accreditation
Seeing Systems
Risk Management Instruments, which can manage risks across multiple risk domains
Risk Transfer refers to the presence of insurance policies, subcontractors who assume risk, and risk transfer documents like liability waivers.
Incident Management refers to having a documented and rehearsed plan for responding to emergencies.
Incident Reporting means documenting safety incidents and their potential causes, analyzing incidents individually and in the aggregate, and then developing and disseminating responses (in the form of revised training materials, safety reports, new policies, etc.) to respond to the incidents, and the trends and patterns they illuminate.
Incident Reviews means having a process for the formal review of major incidents, by internal or external review teams.
Risk Management Committee indicates a group of individuals, including those from outside the organization, who have relevant subject matter expertise, and who can provide resources and unbiased guidance.
Medical Screening refers to structures to ensure that campers and staff are medically well-matched to their circumstances.
Risk Management Reviews are formalized, periodic analyses of the camp’s safety practices.
Media Relations refers to staff who have the training and materials to work effectively with newsmedia in the case of a newsworthy safety incident.
Documentation refers to written or other guidance that records what should be done (e.g. in the form of field staff handbooks or employee manuals), and what has been done (e.g. incident reports, SOAP notes, check-offs, and training sign-in sheets).
Accreditation refers to recognition by an authoritative body, such as the American Camp Association, that widely accepted industry standards have been met.
Seeing Systems refers to employing complex sociotechnical systems theory in the design and implementation of camp safety practices.
Together, the application of policies, procedures, values and systems to manage identified risks, along with the use of broadly effective risk management instruments to address risks across many risk domains, can help a camp or similar institution maintain risks not to exceed a socially acceptable level.
Sidebar: Limitations of Risk Assessments
At this point, we’ve explored some of the history about safety thinking, and a progression of models that attempt to represent why incidents occur, and by extension, how they might be prevented.
We’ve focused on the Risk Domains model, which is a relatively easy-to-use framework designed explicitly for camps and other outdoor and experiential programs.
We talked about how one aspect of the Risk Domains model is, within each risk domain, identifying specific risks that an organization may face, and instituting policies, procedures, values and systems to manage those risks such that they do not to exceed a socially acceptable level.
This involves performing a risk assessment: identifying risks, classifying them by probability and severity, and then establishing appropriate risk mitigation measures.
This is known as a Probabilistic Risk Assessment, or PRA.
With PRAs, a spreadsheet lists risks, and the probability and severity of each:
The risks least likely to be encountered, and with the mildest consequences (in green, below), are likely to be accepted.
The risks most likely to be experienced, and which may have significant negative impacts (in red), are likely to be eliminated, or significantly reduced.
We see this model in the international standard for risk management, ISO 31000. Here, risks are identified, classified, and treated.
Let’s take a moment to look more closely at this PRA process.
While risk assessments are very common across many industries—and, on some level, people perform risk assessments constantly, in their daily life—they do have limitations.
The core limitation is that risk assessments are a relatively simplistic approach to understanding and mitigating potential risks. This means that they are relatively ineffective, unless coupled with more advanced approaches for managing risk—specifically, those approaches informed by complex sociotechnical systems theory.
PRAs typically assess only direct, immediate risks from specific activities, locations or populations, such as weather, traffic hazards, and equipment failure.
They typically fail to account for underlying risk factors such as poor safety culture, financial pressures, deficits in training and documentation, or lack of regulatory oversight.
They also typically fail to account for human factors in error causation: cognitive biases and cognitive shortcuts (heuristics).
Finally, they typically fail to consider systems effects: how multiple risks interact in complex and unpredictable ways that to lead to incidents.
Simply put, reliance on PRAs as a principal risk management tool does not correlate with what research in complex socio-technical systems and human factors in error causation tell us about how incidents occur. They are therefore ineffective as a comprehensive risk management tool or a stand-alone indicator of good risk management.
Outdoor safety researchers Clare Dallat et al. note that the research suggests "...current risk assessment practice is not consistent with contemporary models of accident causation."
This is not a problem for organizations that couple risk assessments with other components of an overall safety system. But for organizations that have a culture which places risk assessments as the leading tool for managing risk, there is a failure to use the best and most current thinking around incident prevention.
Applying Contemporary Safety Science to Camp Programs
There are three specific areas we’ll look at as we consider how to take what we’ve discussed so far about safety science, and apply it to the world of summer camp, travel, adventure, wilderness, outdoor education/recreation and experiential programs.
These are:
Risk Assessments,
Safety Culture, and
Systems Thinking.
Safety Science Applied to Camp: Risk Assessments
We now recognize that risk assessments have an important role to play in identifying and mitigating relatively obvious and front-line risks, as long as PRAs are not seen as the predominant method for managing risk.
The American Camp Association's accreditation process for camps in the USA asks if a camp seeking accreditation has "identified and analyzed potential risks related to human, financial/operational, and property liabilities."
ACA then asks if the camp has "identified risk control techniques currently being implemented to reduce, control or prevent potential loss in identified exposure areas."
These are important risk management steps. And, camps should see this probabilistic risk assessment approach as only one component, but not the predominant component, of a comprehensive risk management infrastructure.
Safety Science Applied to Camp: Safety Culture
Culture, as you recall, is one of the areas in which risks reside, according to the Risk Domains model described above. But what do we mean by culture? And how does culture relate to safety?
We can define culture as an integrated pattern of individual and organizational behavior, based on shared beliefs and values.
Behavior, then, springs from beliefs and values. Actions are visible; yet, the beliefs and values from which they come are not.
The visible and invisible parts of culture
What, then, do we mean by safety culture?
We can define safety culture as the influence of organizational culture on safety.
More specifically, we can understand safety culture as the values, beliefs, and behaviors that affect the extent to which safety is emphasized over competing goals.
An organization has many legitimate goals—safety among them—which must share, or compete for, resources.
This raises the questions: is our safety culture okay? How do we evaluate our safety culture?
We can assess the safety culture of an organization through seven dimensions:
Leadership from the top
Inclusion
Suffusion
Culture of Questioning
Collaboration
Effective Communication
Just Culture
Survey instruments exist to help individuals evaluate the quality of their organization’s safety culture. Participants in the 40-hour online training, Risk Management for Outdoor Programs, for example, complete a detailed organizational self-assessment that helps them rate the culture of safety in their workplace.
An evaluation might identify opportunities for improvement in safety culture. How does an organization—of any size or shape—go about shifting something as abstract as its safety culture, the values and beliefs of its employees, volunteers, customers, and other stakeholders (such as Board members and parents of campers)?
Shifting culture is a change management process. It’s the same general change management process for making any kind of change within any group or team, regardless of the topic or trajectory.
Changing an institutional culture is not easy. It may be helpful, however, to follow an established change management process, as below:
Here, top leadership repeatedly states the importance of safety. What that looks like is made clear, both in day-to-day actions as well as in the use of systems thinking.
Time, money, and political capital are needed to build momentum for change. Appropriate actions should be encouraged, and undesirable ones disincentivized. Finally, a management system to continually evaluate and improve change efforts should be implemented.
Just Culture
One way that camps can exhibit a positive safety culture can be found in how management responds when an incident occurs.
It can be tempting to, by default, blame the person closest to the incident for causing the problem.
The camp counselor drove around the corner too fast, and skidded off the road, damaging the vehicle. You were told to drive carefully, so this is your fault!
However, this doesn’t account for the fact that management packed staff’s schedule so tightly that people were in a rush. And the camp director repeatedly drove too fast, including when other staff were present. So, who is really to blame?
When in incident occurs, it’s useful to look at the underlying factors that led to the mishap. To avoid unfairly blaming people, and to most effectively identify and address the elements that actually fostered the incident, it’s important to address the causal elements throughout the entire system.
When we focus on what went wrong, rather than who “caused” the problem, we’re practicing Just Culture.
Just Culture empowers people to report incidents, since they won’t fear getting into trouble, and it helps the organization address the actual underlying safety issues that helped bring about the incident.
Safety Science Applied to Camp: Systems Thinking
The final area we’ll focus on where contemporary risk management theory and modelling can be applied to camp programs is in specific applications of systems thinking.
There are five principal approaches we’ll consider:
Resilience engineering
Considering all risk domains
Considering all risk management instruments
Considering strategic risks
Employing systems-informed strategic planning
We’ll address each, one by one.
Five ways camps can employ systems thinking in safety management.
#1: Resilience Engineering
The concept of resilience engineering stems from a central idea about complex systems: there will be breakdowns in the system—some time, somewhere—but we don’t know when, or how, or what risk domains will be involved. We can’t create rules to address every potential problem. And we don’t know how to stop humans from committing errors that lead to incidents.
Therefore, we need to build into the system a capacity to withstand unanticipated breakdowns, from wherever and whenever they occur, without falling apart.
This is the crux of resilience engineering.
There are four principal approaches that camps can take to apply principles of resilience engineering to their programs:
Build In Extra Capacity
Build In Redundancy
Employ an Integrated Safety Culture
Foster Psychological Resilience
Extra Capacity
Extra capacity means having reserves of staff, equipment, transportation options, and so on, so that operations can continue on more or less normally during times of significantly increased demand or reduced supply.
For a camp, this may mean having a staffing structure with standby employees who are ready to step in if one or more persons are unable to perform their duties, for example due to possible COVID-19 exposure.
It may also mean having backup equipment available, in case items are lost, stolen, sink to the bottom of the lake, or the like.
And it means having staff trained to be able to perform at a level higher than what would normally be anticipated. For instance, staff leading a rafting trip in class III water should be comfortable paddling in class IV water. This way, if there is an emergency, personnel are able to effect a rescue without exceeding the level of their own abilities.
Whitewater boating guides should be capable of performing in water one class higher than what they’re running.
Redundancy
Commercial airplanes have multiple flight computers and multiple pilots, so if one stops functioning normally, another is available. This illustrates the principle of redundancy.
Camps, too, are wise to judiciously use redundancy to build a resilient safety system.
For example, a trip-and-travel camp may have multiple ways to identify emerging safety issues: incident report forms, a written report from trip leaders at expedition’s end, feedback systematically gathered from participants, periodic safety audits by a third party, and so on.
Wilderness expeditions should have multiple leaders per group, so if one is incapacitated, the other can perform first aid, rescue, evacuation or other functions. Both should be trained in first aid—and for remote expeditions, campers should be trained in basic first and CPR as well, if trip leaders are simultaneously injured.
Multiple telecom devices should be available to communicate in an emergency. If the radios aren’t working, a cell phone will come in handy.
And, as a final example, multiple evacuation options should be available—from a camp facility that might be endangered by wildfire, or a travel program in a far-off destination.
Integrated Safety Culture
Integrated safety culture, as we discussed above, means balancing rules-based safety with allowing staff to use their judgment.
Integrated safety culture employs policy and procedures, but also the flexibility to adapt to unpredictable changes.
Psychological Resilience
When a crisis occurs, individuals may rise to the occasion, drawing on previously unknown wells of inner strength, grit, and perseverance.
In other cases, during an emergency, individuals may freeze, flee, or quit.
Camps that find ways to recruit, hire, train and retain staff who have a positive attitude towards challenge can position themselves so that when a major stress occurs to the camp system, staff dig in and work hard to resolve the problem, even in the face of great challenge and uncertainty.
Resilient staff can make all the difference in a crisis.
#2: Consider all Risk Domains
When a camp seeks to build a risk management system that can withstand stressors but still perform, it’s useful to look at all the regions from which risks—and by extension, system breakdown—can emerge. The eight direct risk domains and four underlying risk domains are illustrated below.
When a camp is considering opening up a new activity (for example, a challenge course, or horseback riding program), a new location (a trip to a national park), or a new population (adults, at-risk kids, etc.), it’s apt to ensure whether all parts of the organization are fully prepared.
Does the marketing team have accurate promotional materials? Are liability waivers updated to allow for informed consent to new risks? Are staff training checkoffs updated for the new location? Do logistics staff have all the equipment ready to go?
In addition, all domains should be considered when conducting incident reviews and risk management reviews (safety audits). And when incident reports are evaluated, and recommendations made for safety improvements based on evaluation results, all domains should be considered when creating those recommendations.
#3: Consider All Risk Management Instruments
While a small, startup camp may not employ each of these eleven risk management instruments, due to capacity constraints, most larger camp programs would be well-served to employ each one. This will add layers that strengthen the camp’s capacity to prevent incidents from occurring, and mitigate their impacts should a major mishap occur.
#4: Consider Strategic Risks
Strategic risks are those that pose a long-term threat to the camp’s viability.
Demographic, market and social shifts may slowly reduce camp attendance and financial sustainability over time. This can occur as a camp that caters to one demographic slowly loses relevance as the nature of the population near the camp changes.
Trends in youth recreation—moving from hunting and fishing and other outdoor pursuits in generations past, to electronic entertainment today, can also threaten camp vibrancy. The tendency away from joining groups towards solo recreational pursuits may be another example.
Likewise, political and geopolitical concerns can influence the viability of a camp program. Camp programs have suffered COVID-19 outbreaks or shut down entirely due to uncontrolled SARS-CoV-2 transmission at camp, despite the abundance of good public health guidance for camps and similar programs. Politically generated misinformation may have fed these outbreaks.
And for camp programs happening in other parts of the world, civil unrest and tension or conflict between countries can influence the safety and viability of camp programs.
Finally, the global climate crisis is an exemplar of a strategic risk affecting camps. Camps have been harmed by the climate emergency in myriad ways: from camp properties burning down, to heat-related injuries, to smoke-related closures, harmful algal blooms, flooding, and much more. This is widely anticipated to get worse for decades.
Strategic risks—from the rise of electronic entertainment, to geopolitical tension and climate change—are risks to camps.
Although smaller camps likely don’t have much capacity to engage in a detailed review of these strategic risks, all camp programs are wise to pay attention to long-term threats to their viability, as resources permit.
#5: Systems-Informed Strategic Planning
The fifth and final application of systems thinking applied to camp safety is in systems-informed strategic planning around risk management and camp programming.
We often tend to hear what we want to hear (confirmation bias). And we sometimes unconsciously avoid asking ourselves about difficult issues with no easy resolution, such as contemplating shutting down a beloved program due to increasing safety risks.
There are a variety of ways in which organizations can approach an issue—such as safety—in ways that help teams think lucidly and creatively about the issue, unhindered by bias or inaccurate assumptions (heuristics).
One of these that has been used successfully in the camp context is the process of visualizing a hypothetical catastrophe that has occurred at camp. Individuals then brainstorm ideas about why this critical incident occurred. Recommendations are generated, and can be put into place—before any catastrophe actually occurs.
This method of visualizing a fictional catastrophe and identifying preventive measures is known as a “pre-mortem.”
Steps in the process of visualizing catastrophe, or “pre-mortem”
At one outdoor program, following the death by lightning of a staff member leading a group of youth, the CEO gathered staff together and asked, “Who is the next person who is going to die? How will they be killed?”
The staff group, which had representatives from all levels of the organization, from entry-level to executive, was able to bring up a number of potential safety issues that had never been raised before, as there had never been a suitable forum in which to discuss them.
(The issues included topics such as high field staff turnover, and long work hours, leading to a cohort of relatively unskilled and exhausted staff—an issue familiar to many camp leaders.)
Conclusion and Further Resources
What happened to the unfortunate camper who ate a bunch of poison hemlock?
The camp had a good culture of safety, with counselors trained in emergency response. Medical staff and a well-stocked infirmary were on site. Soon after the camper swallowed the toxic plant parts, camp staff became aware of the incident and promptly alerted the camp director, who happened to be a paramedic.
The director immediately drove the camper to a nearby medical facility, where their stomach was pumped. The camper suffered no serious symptoms, and returned to camp—wiser, and one hopes, more judicious in culinary choices—that same day.
In Summary
Many camps have an enviable safety record, stretching back generations. But a positive history is not a guarantee of future success.
As the field of safety science matures, advances in risk management theories and modelling are made. These new resources can and should be employed by camps, to the extent possible.
We’ve seen how safety science has evolved over the last 100 years from simplistic linear models of incident causation, to seeing incidents as springing unpredictably out of a complex system involving people and technology—complex sociotechnical systems.
We’ve looked at a variety of models that attempt to illuminate this theory, AcciMap being a leading framework. The Risk Domains model provides a systems-based representation of how incidents occur, customized for camps and similar outdoor and experiential programs.
And we’ve identified several ways that camps can apply the best current thinking in risk management to practical ways for improving safety.
These include:
Using risk assessments in their proper role, without over-relying on them
Building and sustaining a positive culture of safety
Incorporating systems thinking into camp safety by:
Applying resilience engineering ideas, such as extra capacity, redundancy, integrated safety culture and psychological resilience, to camp;
Considering all risk domains when managing risks;
Considering the use of all applicable risk management instruments;
Considering strategic risks, such as demographic shifts, political concerns and climate change, and
Using systems-informed strategic planning to generate creative safety solutions.
For More Information
Camp-based associations, such as the American Camp Association, do an excellent job of helping their members stay up-to-date on issues of quality and safety.
And there are other opportunities to continue to learn about important improvements in how camps and similar programs can protect their participants, their staff, their organization and the community at large.
More information about the systems thinking ideas here can be found in the textbook Risk Management for Outdoor Programs: A Guide to Safety in Outdoor Education, Recreation and Adventure.
To explore these ideas even further, and for an opportunity to develop a systems-informed safety improvement plan customized for one’s own program, individuals can take part in the 40-hour online course, Risk Management for Outdoor Programs. This comprehensive training occurs over four weeks and provides camp leadership with a comprehensive, detailed exploration of systems thinking in camp safety and much more.
A textbook and Risk Management for Outdoor Programs training provide additional resources
Camps provide extraordinary value to children and adults, all around the world. The benefits are clear. And, so is our responsibility to keep abreast of advances in risk management that can help camps provide safe, learning-filled and fun experiences to campers for generations to come.
Comments